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This paper continues a study of the dynamics of chevron formation in smectic-A liquid crystals in samples
with boundary conditions apparently favoring the bookshelf structure, with uniform layers perpendicular to the
sample cell plane. The chevron structure that arises when the sample is cooled results from the mismatch
between preferred bulk and surface layer thicknesses. In a previous paper we considered relaxation driven by
the strong coupling between layer deformation and fluid flow. In this paper we discuss the alternative scenario
in which boundary conditions suppress this coupling. Layer deformation now occurs by layer relaxation in the
absence of fluid flow. This process is extremely slow and is governed by the nonlinear Fisher-Kolmogorov
equation. Chevrons do form under some circumstances, but the process is irregular, and quasimetastable jagged
multi-edged multi-tip-like structures can occur on intermediate time scales for suitable layer strains. In the
absence of surface layer pinning, layer slippage occurs at the surfaces. We also examine the possibility that
deformation may occur through a wave of invasion destroying the bookshelf region.
@S1063-651X~99!10509-9#

PACS number~s!: 61.30.Cz, 42.79.Kr, 64.70.Md, 83.70.Jr
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I. INTRODUCTION

This paper is the second of two studies of the dynamic
chevron formation in smectic-A liquid crystals. We shall re-
fer to the first study@1# as I. The chevrons are the result
layer buckling that occurs when the liquid crystal is placed
a sample with homogeneous boundary conditions that
would naively expect to favor a so-called bookshelf geo
etry, with uniform layers perpendicular to the sample pla
There is now good evidence that the chevrons occur a
result of mismatch between bulk and surface layer thi
nesses.

We show the chevron geometry in Fig. 1. We refer t
reader to other papers for a more detailed experimental
theoretical background@2–7#. We note here only that ther
are a considerable number of experiments, most notabl
the related smectic-C phase, and that theoretical work on th
statics seems to confirm the picture presented above.

The consensus is that the chevron structure is the co
quence of the mismatch between the natural smectic reci

*Permanent address: Department of Physics, University of St.
tersburg, St. Petersburg 198904, Russia.
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cal layer spacingqB and the reciprocal layer spacingq im-
posed by the surface interaction. We can define the strae
512q/qB . How the strain arises is more of a mystery.
the simplest hypothesis, it follows from layer pinning at t
boundaries while at the same timeqB and q change differ-
ently with temperature. More elaborate hypotheses do
demand this postulate and ascribe the layer mismatch
vastly differing time scales of surface and bulk relaxation.
any event, in many circumstances the chevrons do form
long as the strain is greater than a critical strain

ec54p2K/BL2,

where K and B are the smectic bending and compress
elastic coefficients andL is the cell thickness. In previou
work we have found it useful to nondimensionalize th
strain in terms of the so-called chevron number@6#, s
5e/ec .

In I we developed a formalism to account for the chevr
structure dynamics for a quenched system for which
bookshelf structure is no longer stable. In this picture,
chevron structure develops from thermal fluctuations follo
ing spontaneous symmetry breaking. The resulting se
equations involves an equation of fluid motion and a rel
e-
4199 © 1999 The American Physical Society



in
rm
m
s-
ur
v

g
ng
sa
ds

n
tir
a
o
dg
n

w
f

-
g
bu
ud
a
a
n

th
es
a
li
n,
y

e
on
n
o
t
es

he
ure.
r I
en

n of
ula-

of
se
lu-

er

, is

n be
y

tem

but

e
e
d

f

h

nd
1

the

4200 PRE 60A. N. SHALAGINOV, L. D. HAZELWOOD, AND T. J. SLUCKIN
ation equation for the smectic order parameter in the mov
system. These equations are coupled, with the forcing te
in the order parameter equation and in the equation of
tion proportional to each other. It turns out that, if it is po
sible, the layer displacement of the chevron primarily occ
in the fluid motion. The process whereby the layers mo
with respect to the fluid, a process known aspermeation@8#
in the liquid crystal literature, is some eight orders of ma
nitude slower than the fluid-induced motion. The coupli
between layer and fluid motion shortens the time neces
for chevron structure to develop from weeks to millisecon

In this paper we continue the study which we began in
by considering a situation in which the boundary conditio
at the ends of the cell are such as to suppress almost en
fluid motion. We may suppose that whereas in I the fluid w
free to slosh around in the plane of the cell, in contrast n
the liquid crystal is enclosed by fixed boundaries at the e
of the cell. The result is to reduce the number of equatio
for now we must consider the smectic order parameter~in
this case the layer displacement! relaxation alone. In prin-
ciple, this appears to be a simplification. In practice, ho
ever, our previous study benefited from the existence o
small parameterd25tp /tv;1028, wheretv ,tp are, respec-
tively, the characteristic viscous~fluid! and permeation re
laxation times. This small parameter rendered some dan
ous nonlinear terms irrelevant in our previous paper,
these terms return with a vengeance to haunt us in this st

In I we found that the development of the chevron w
rather straightforward. The chevron tip developed almost
cording to a universal law, when suitable normalizations a
time scales were considered. The chevron tip followed
monotonic tanh-like curve as a function of time.

Once fluid flow is suppressed, however, apart from
necessary dramatic slowing down of the relaxation proc
this quasi-universality no longer holds. We shall find th
under some circumstances there will be surface layer s
page, leading to uniform tilted layers. If this is forbidde
chevrons do form. However, they form in an irregular wa
with the intermediate states—depending on the value ofs—
sometimes developing more than one layer bend befor
nally settling down to the uniform chevron state. In additi
we shall see that the free energy relaxation involves lo
periods of stasis, with some periods of dramatic rapid c
lapse. We shall also see that one plausible scenario is tha
chevron creation takes place through an invasion proc
rather than through homogeneous creation.

FIG. 1. Picture of the chevron structure, with cell of widthL,
and showing natural layer wave numberqB , surface-imposed wave
numberq, conventions forx andz axes, and layer angleu.
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The plan of the paper is as follows. In Sec. II we give t
necessary background to the equilibrium chevron struct
Then in Sec. III we provide a very brief summary of pape
and exhibit the equations that govern our study. We th
present the results of a study of homogeneous nucleatio
the chevron phase. Then in Sec. V we present some calc
tions on the domain wall motion model of the formation
the chevron phase. Finally, in Sec. VI we combine the
studies, together with paper I, and draw some brief conc
sions.

II. STATICS

A. Elastic energy

We recall some basic notions from I. The smectic lay
structure is described by a phase functionW(r ,t) @6#, so that
a layer is a surfaceW(r ,t)5const. The directorn, which
points along the average local orientation of the molecules
a fast variable, with relaxation time;1027 s @10#. On the
time scales considered in this paper, the elastic energy ca
expressed in terms ofW only. The energy density is given b
@9#

f ~r !5
1

8
B@qB

22~¹W!221#21
1

2
KqB

22~¹2W!2. ~1!

We perform calculations in a Cartesian coordinate sys
r5(x,y,z), with conventions shown in Fig. 1. The Sm-A
liquid crystal is confined between two plates located atx5
2L/2 andx5L/2. The layers are stacked along thez direc-
tion because the boundary conditions imposen̂5 ẑ at the
surfaces. We take the system to be uniform along they axis,
so that physical quantities are functions ofx,z only.

The absolute free-energy minimum in an unconfined
oriented system occurs forW5qB(z2z0), which corre-
sponds to a stack of smectic layers perpendicular to thz
axis. The quantityqBz0 is an arbitrary phase factor. In th
bookshelf structure,qB is replaced by the surface-impose
reciprocal layer spacingq. Deviations from the bookshel
structure can be described by

W5q@z2u~r !#, ~2!

whereu is the layer displacement.
The critical strainec is a small parameter. For a cell wit

L5231023 cm andl5AK/B'331027 cm, we find ec
'1026. The strain is defined by the layer mismatch,

e512
q

qB
, ~3!

which is the fractional difference between the natural a
imposed layer periodicities. It will be useful to note that
2q2/qB

2'2e. Substituting Eq.~2! into Eq.~1! while truncat-
ing at lowest order ine, ux , and uz yields the following
re-expression of the free-energy functional in terms of
local layer displacements:

F5
1

2E d3r FBS 1

2
ux

22uz2e D 2

1K~uxx!
2G . ~4!
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We have dropped terms linear inuzz and uz
2 , which are

higher order in the small quantityu.
This is the free energy we have used in I, apart fro

allowing inhomogeneities in thez direction not considered
there. Settinge50 gives rise to the expression for the elas
free energy with a nonlinear term that guarantees invaria
with respect to rotations@8#. Furthermore, puttinguz50 and
u5ux in Eq. ~4! yields the Limat-Prost model@5# of the
chevron structure.

Equilibria of the system are defined by

dF

du
50 ~5!

or, equivalently,

S ]

]z
2

]

]x
uxD S 1

2
ux

22uz2e D1
L2

4p2
ecuxxxx50. ~6!

We briefly recall from I the equilibrium structure, fo
which uz50. Elsewhere@5,6#, this has been considered
terms of the layer tilt angleu, with ux5tanu'u. The ap-
proximation is true for small tilts, which in practice is alway
the case. Here we reformulate the problem in terms of
displacementu. In principle, the energy is minimized by
displacement fieldu(x)5A2ex. This, however, requires
slipping of the smectic layers at the bounding plates. T
seldom occurs, because the boundary conditions seem t
the layers at the interfaces:

u~6L/2!50. ~7!

In addition, it appears@5,6# that it is reasonable to impos
infinite anchoring:

ux~6L/2!5u~6L/2!50. ~8!

The interplay between the bulk elastic energy and bou
ary conditions yields the chevron structure. There are
wide regions in which the layers are flat, but tilted so as
have the correct packing. In the middle of the cell there is
interphase region of thickness 2l/A2e @5#. There are also
two narrow high curvature regions at the cell walls, who
thickness depends on the surface anchoring, and which
appear as the anchoring strength vanishes.

This analysis@5,6# was actually carried out in terms ofu
and the nonslip boundary conditions were satisfied by
stricting u(x) to be an odd function. This procedure is co
venient for the study of stable states, but fails for dynam
We thus return to a study of the governing differential eq
tion in terms of displacementu. However, we emphasize tha
this is a fourth-order equation inu, rather than asecond-
order equation inu. The significance of this remark wil
become clear later in our study.

B. Near-critical strain: Statics

The Euler-Lagrange equation~6! can in general be solve
only numerically. However, insight can be gained by d
tailed analysis for strains just above the critical strain:e/ec
ce
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!1. We first briefly recall the analysis for a system unifor
in the z direction for this regime, and then pass to the mo
interesting nonuniform case.

In the uniform case Eq.~6! can be linearized to yield

euxx1
L2

4p2
ecuxxxx50. ~9!

The solution of this equation satisfying the boundary con
tions is

u~x!5
L

2p
A1S 11cos

2px

L D . ~10!

This is the principal mode in a Fourier expansion of the f
chevron deformation.

The amplitude ofA1 is then determined by taking th
weakly nonlinear limit of Eq.~6!, or by substituting the
variational form~10! into the functional~4!. In either case,
this yields a Ginzburg-Landau equation forA1:

3

8
A1

31A1~ec2e!50, ~11!

with solution

A1562A2~e2ec!

3
, ~12!

where the sign imprecision corresponds to the two equiva
opposite symmetry deformations. This analysis correspo
to Sec. IV B and Eq.~58! of I.

We now examine the behavior of this deformation clo
to the end of the cell atz50, where we may suppose that th
boundary conditions compel the layers to beexactlybook-
shelf, and thus with deformationA150. The deformation in
this regime can now be expressed in terms of the princ
mode,

u~x,z!5
L

2p
A~z!S 11cos

2px

L D , ~13!

where the amplitude of the deformation is described by
function

A~z!5A1g~z!, ~14!

and its spatial dependence byg(z) with g(0)50 ~i.e., no
deformation! andg(`)51 ~i.e., full deformation!.

The behavior of the deformation is now described by
differential equation,

jp
2 ]2g

]z2
1g2g350, ~15!

which generalizes Eq.~11! to the nonuniform cell. The pen
etration depthjp is defined by

jp5
L

2p
A 3

e2ec
. ~16!
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The solution to Eq.~15! satisfying these conditions is give
by

g~z!5tanhS z

A2jp
D . ~17!

The chevron structure develops from the wall over a cha
teristic lengthA2jp . We shall show later in this paper tha
the penetration depthjp also plays a role in moving front
between deformed and undeformed regions.

III. DYNAMICS: HOMOGENEOUS NUCLEATION

A. Basic equations

In I we have discussed in detail the dynamical equati
that govern the chevron formation. These equations invo
Navier-Stokes equations that govern fluid motion, and
time-dependent Ginzburg-Landau equation governing p
meation. By far the dominant effect of layer mismatch aris
in the Navier-Stokes equation, and the effect of t
Ginzburg-Landau equation is a negligible long-time rela
ation correction.

We now suppose the mass flow to be strictly forbidden
a result of the edge conditions. As a result, only one of
full set of hydrodynamic equations is relevant,

]u

]t
2v35“•J, ~18!

with v3 the velocity component in thez direction andJ a
phase flux term:

Jk5lp

dF

d¹ku
. ~19!

The quantitylp is the usual permeation constant of SmA
hydrodynamics@8#, which relates the layer flux through
stationary medium to the relevant thermodynamic force. I
more general case, this equation could also include a t
proportional to¹T, but in this paper we shall assume f
simplicity that the temperature is constant throughout
cell. Equation ~18! is just a time-dependent Ginzburg
Landau~TDGL! equation for the conserved variableu.

We now make some remarks about the zero-mass-
condition. For homogeneous chevron nucleation,v3 is uni-
form in the z direction by definition. This condition, com
bined with the incompressibility condition“•v50, forces
v1 to be uniform in thex direction. But as the fluid is fixed a
each face of the cell, we necessarily must havev150. If the
edges of the cell are fixed, then homogeneous nuclea
demandsv350. Thus in this case there can be no fluid m
tion at all. The situation can, in principle, be complicated
the case of inhomogeneous nucleation, which we shall
cuss in the next section, but even here it turns out that fl
motion can be neglected.

Setting v i50 we obtain the time-dependent Ginzbur
Landau equation,

ut52lp

dF

du
, ~20!
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whereF is defined by Eq.~4!. The functional derivative is

dF

du
52

]

]x

]F

]ux
2

]

]z

]F

]uz
1

]2

]x2

]F

]uxx

52
]

]x FBS 1

2
ux

22uz2e Dux2KuxxxG
1

]

]z FBS 1

2
ux

22uzD G . ~21!

In the homogeneous nucleation case this reduces to:

ut5lp

]

]x FBS 1

2
ux

22e Dux2KuxxxG . ~22!

We remark as a footnote to this discussion that this TD
guarantees positive energy dissipation, as the following
gument demonstrates. Using Eq.~20!, the energy dissipation
is given by

dF

dt
5E d3r

dF

du
ut52lp

21E d3rut
2<0. ~23!

Thus the free energy of the system always decreases un
local or global minimum is reached.

Physically, Eq.~22! describes how the molecules rea
range themselves, forming new layers during the format
of a chevron structure in a cell with closed ends. In th
process the smectic layers can be thought of as mov
through the fluid. The process is expected to be very s
because the permeation constant is typically small.

B. Time scale and nondimensionalization

We first estimate the relevant time scale. To do this,
linearize the governing equation~22!,

ut52lp~eBuxx1Kuxxxx!, ~24!

and take]x;1/L. If e,ec there is no chevron; otherwise w
take the smaller of two possible times, which involves t
second term, replacingK by ;ecBL2. Thus we derive the
permeation time scale first discussed in the Introduction:

tp5
L2

ecBlp
5

L4

4p2lpK
. ~25!

Taking e51025, L51023 cm andBlp51025 cm2 s21 @8#,
we find the time scale of 104 s.

We thus nondimensionalize the time variable by dividi
by tp . We now introduce dimensionless parameters:

x̃5
x

L
, ~26a!

t̃ 5
t

tp
, ~26b!

U~ x̃, t̃ !5
u~x,t !

LA2ec

, ~26c!
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q~ x̃, t̃ !5
]U~ x̃, t̃ !

] x̃
5

u~x,t !

A2ec

. ~26d!

Equation~20! can be simply reexpressed in this new no
tion,

Ut̃5
]

] x̃

dF
dq

, ~27!

where now the dimensionless free energy and its functio
derivative with respect to scaled angle are,

F5
1

2E21/2

1/2

dx̃F1

2
~q22s!21

1

4p2
q x̃

2G , ~28a!

dF
dq

5q~q22s!2
1

4p2
q x̃x̃ , ~28b!

wheres5e/ec is the chevron number discussed in the int
duction @6#.

The displacementU is a natural hydrodynamic variable
Nevertheless, as in I we find it more useful to write down t
dynamical equation in terms of the scaled angular varia
q:

q t̃5
]2

] x̃2

dF
dq

5~3q22s!q x̃x̃16qq x̃
2
2

1

4p2
q x̃x̃x̃x̃ .

~29!

However, unfortunately not all solutions of Eq.~29! sat-
isfying the boundary condition Eq.~8! q(61/2)50 are
valid. The change in variable fromU to q has caused the
information about slipping at the interfaces to be lost
equivalently, the informationU(61/2)50 has not been
used. This information can be retrieved by applying the n
local condition

E
21/2

1/2

dx̃q~ x̃, t̃ !50. ~30!

This integral condition presents formidable technical ma
ematical difficulties which in general outweigh the adva
tages of rephrasing the problem in terms ofq. Fortunately,
however, in this case the principal modeq;sin(2px̃) re-
sponsible for the formation of the chevron structure is an o
function in x̃. In addition, Eq.~29! contains only terms odd
in q.

Thus any solutionq( x̃, t̃ ) which is an odd function att̃
50 remains odd for all times and then satisfies Eq.~30!
automatically. The descriptions in terms ofU and q are
equivalent so long as we confine our discussion to oddq and
evenU.

C. Spectral analysis

The governing equation~29! is a fourth-order nonlinea
differential equation. Fourth-order differential equatio
-

al

-

e
le

-

-
-

d

present notorious stability problems within finite differen
schemes. As a result, we have used a spectral method, w
we now describe briefly.

The manifold of solutionsq( x̃) is explicitly restricted to
functions odd inx̃. This choice guarantees thatU( x̃, t̃ ) sat-
isfies layer nonslip conditions. Then we recall that an o
function satisfying the boundary condition equation~8!
q(61/2)50 can be expanded in a sine Fourier series:

q~ x̃, t̃ !5 (
n51

`

An~ t̃ !sin~2pnx̃!. ~31!

The governing equation~29! is apartial differential equation
in space and time. Using standard projection methods, it
now be rewritten as a set of nonlinear first-orderordinary
differential equations governing the time evolution of t
Fourier coefficientsAn( t̃ ).

Following some straightforward but~extremely!! tedious
algebra which we omit, we obtain

dAn

d t̃
54p2n2~s2n2!An12 (

k,l ,m51

`

PnklmAkAlAm ,

~32!

where the coefficientsPnklm are defined as

Pnklm524p2n2E
21/2

1/2

dx̃ sin~2pnx̃!sin~2pkx̃!

3sin~2p l x̃ !sin~2pmx̃!. ~33!

In the weak chevron limit, only theA1 equation is rel-
evant, and other modes can be ignored. The permea
driven chevron development will turn out to be qualitative
exactly the same as in the hydrodynamically driven case
cussed in I. Only the time scale is slower~by a factor of
108). In this regime other modes decay. Because evenA1
remains small, the nonlinear terms in the equations
An ,n>2 remain unimportant. As a result, these equatio
remain essentially linear and independent.

At early times, soon after the bookshelf structure has b
quenched into an unstable state, the linear limit of Eq.~32! is
sufficient forall values ofs. The equations are independen
For low enoughn the amplitudesAn grow, and for highn
they decrease, in each case with its own characteristic t
However, for these higher values ofs, the nonlinear terms
eventually lead to mode coupling.

This interaction between the harmonics can only be
glected for very weak chevrons (u(s21)u!1), and at early
times. Otherwise it must be taken into consideration. In pr
ciple, there is an infinite set of nonlinear ordinary different
equations. In practice, it is necessary to truncate this se
equations at some harmonicN. We can estimateN by noting
that the nth harmonic resolves length scalesD x̃n
;(2pn)21. However, from Eq.~28a! we can see that the
characteristic length over which changes occur in the st
chevron isDj̃;(2pAs)21. We shall not require values ofn
in the harmonic expansion that cause changes on le
scales shorter thanj̃. PuttingDj̃;D x̃N yields N;s1/2.
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D. Early-time analysis

At early times, soon after the bookshelf structure has b
quenched into an unstable state,q is small and the evolution
may be described by the linearized permeation equation.
evolution of thenth harmonic is described by

]An

] t̃
54p2n2~s2n2!An5gnAn . ~34!

These equations display interesting features and may
compared with the analogous case discussed in I. In that
mass flow is permitted; then2 contribution togn governs the
dominance of the modes with increasings. This differs dra-
matically from the evolution of the equivalent modes in I.
that case the factor of 4p2n2 is absent.

The consequence of this difference is as follows. If, as
I, mass flow is permitted, the fundamental harmonic is do
nant at early times forall s, in the sense that the growth ra
of the fundamental mode is always larger than those of
other modes. In the case discussed in this paper, this i
longer true. Nowgn has a maximum aroundn5As/2. The
dominant mode is that for which, roughly speaking, integen
is close to this optimal value andgn is largest.

Specifically, thenth mode becomes dominant when it ju
begins to grow faster than the (n21)th mode. This will oc-
cur when

gn5gn21 ~35!

or, equivalently,

n2~s2n2!5~n21!2@s2~n21!2#. ~36!

Thus

s@n22~n21!2#5@n42~n21!4#, ~37!

or

sn5n21~n21!252n222n11. ~38!

This yields the following results forsn for low n:

~39!

The sn51 case marks the critical value for any chevr
formation. For deeper quenchesn is larger, and then forsn
<s,sn11 , thenth mode dominates. In this case the syst
is likely initially to develop spatial modulations inq with
wave number 2pn.

E. Fundamental mode behavior over long times

To look at the long-time limit we start by considering th
weak chevron case. As discussed above, in this regime
theA1 sine-wave term in the expansion~31! is relevant. This
limit obtains in the near critical regions>1 whose statics
were discussed in Sec. II B. The amplitudeA1 then corre-
n

he

be
se

n
i-

e
no

ly

sponds to the amplitudeA1 . Equation~32! then reduces to
the familiar time-dependent Ginzburg-Landau form:

dA1

d t̃
54p2F ~s21!A12

3

4
A 1

3G . ~40!

This mode evolves continuously and monotonically from
initial fluctuation up toA1(`)52A(s21)/3. In the limit
(s21)!1 only this mode is important. Equation~40! has
sets of solutions of the form

A1~ t̃ !52S ~s21!

3 D 1/2

$11exp@28p2~s21!~ t̃ 2 t̃ 0!#%21/2.

~41!

Note that t̃ 0 is the time at which the amplitude reaches h
its final value, rather than the time at which the time evo
tion starts. At the initial time the amplitude is very small, a
this corresponds to somet̃ I! t̃ 0 . The size of the initial fluc-
tuation affectst̃ I , but the subsequent development is oth
wise insensitive to it.

This is close to a tanh-like form, starting close to 0, i
creasing steeply aroundt̃ 5 t̃ 0 , and then stabilizing at the
final equilibrium value. Final behavior is exponential with
characteristic formation timetp /@8p2(s21)#, which di-
verges at the critical points51. The characteristic time fo
initial growth is faster than this by a factor of 2.

The weak chevron displacement has the cosine fo
given by Eq.~10!. As s is increased, however, the equilib
rium chevron displacement sharpens up and approache
characteristicV shape with small rounded healing regio
close to the walls and at the chevron tip. In this regime
time evolution is analogous to the hydrodynamical case
cussed in I, although on a dramatically longer time sca
The spatial structure of the dominant mode is, however,
as in I. However, as we have seen in the last section, as
passes first through the threshold ofs2 and then past highe
sn , the behavior changes. It is to this evolution behavior
turn in the next section.

FIG. 2. Time development of thes51.5 chevron, showing the
monotonic time dependence of displacementU. Time ~a! is the
initial fluctuation. Times~b! through ~d! exhibit illustrative snap-
shots at consecutive later times.
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F. Long-time behavior at higher chevron number

For s>s2 the time evolution changes qualitatively, as
result of the dominance of higher harmonics. We have n
solved the set of first order spectral differential equatio
numerically using the fourth-order Runge-Kutta meth
@11#. The number of modesN was chosen so that the value
of An were insensitive to the adding of extra modes. In a
dition, AN11 is negligible. The equilibrium solution can b
further checked by observing that in this case the quanti

I ~x!5
1

4p2
qx~x!22

1

2 ~q~x!22s!2

remains essentially constant. This quantity is analytically
actly constant in the static case.

The details of the numerical results are extremely se
tive to the initial conditions and the quench severity. In
infinite system with a random initial fluctuation, the syste
would develop all modulation lengths 2p/n consistent with
s>n2, with the fastest-growing mode atn2' s/2. Which
mode dominates the intermediate time behavior depends
sitively on how the initial amplitudes of individual mode
compete with their relative rates of growth.

FIG. 3. Time development of thes51.5 chevron, showing the
monotonic time dependence of nondimensionalized angleq over
half of the cell. The other half of the cell is a mirror image of th
Graph legend as in Fig. 2.

FIG. 4. Time development of thes512 chevron, showing the
time dependence of displacementU. Times ~a! through ~d! repre-
sent consecutive snapshots as in Fig. 2. Graph legend as in pre
figures.
w
s

-

-

i-

n-

In our calculations we start with an initial fluctuation o
q151023 in the fundamental mode, and this appears to
strict the solution manifold. By this we mean that we obse
dominance by modes with lowern than the linear early-time
analysis might predict. With no initial fluctuation at all the
will be no subsequent time evolution. An initial small fluc
tuation in the fundamental mode is sufficient to induce s
sequent evolution in highern modes through the nonlinea
terms. These induced modes then grow, and at sufficie
high n grow faster than the fundamental mode. However,
extent to which faster mode growth can compensate for l
of initial mode amplitude depends very crucially on the ma
nitude of the initial conditions, rounding errors and so on

In the figures we show how the time developme
changes ass is increased. In Figs. 2 and 3 we show t
evolution of the scaled displacementU and the nondimen-
sionalized angleq over the whole width of the cell, fors
51.5. This lies well inside the region where the growth
the fundamental mode is fastest. Indeed, here the relati
low value ofs means that the shape of the equilibrium che
ron is not well developed, andq does not closely approac
its natural values of61 except at isolated points. We se
that, as for the very weak chevron case, and as in I,
chevron growth toward its equilibrium shape is monotoni

ous

FIG. 5. Time development of thes512 chevron, showing the
time dependence of nondimensionalized angleq over half of the
cell. The other half of the cell is a mirror image of this. Grap
legend as in previous figures. Note the transient development o
n52 mode.

FIG. 6. Time development of thes520 chevron, showing the
time dependence of displacementU. Graph legend as in previou
figures. Note the transient but now relatively long lasting devel
ment of then53 mode.
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In Figs. 4 and 5 we show analogous graphs fors512.
We recall from Eq.~39! that for this value ofs, the fastest
growing mode is then52 mode. The influence of then
52 mode can be discerned in these figures, causin
slightly wobbly chevron shape at intermediate times in F
3. The angular plot exposes this behavior more easily; os
lations inq with wave number 2 are visible at intermedia
times. However, the counterpart of the rapid growth of th
modes at early times is their rapid disappearance at l
times. This occurs here, leading to a late-time conventio
chevron, withq now saturated over most of the cell widt
with a relatively narrow chevron tip and with healing regio
close to the cell walls, as expected.

In Fig. 6 we show the evolution of the layer displaceme
only for s520. Here then53 mode has the fastest growt
and indeed at intermediate times the displacements formW
shape corresponding to this mode. In this structure there
several~quasi-equilibrium! regions ofq'61 separated by
chevron-tip structures. At early times~not shown!, the mul-
titip structure has not yet developed, and only the fundam
tal mode grows. This is then overwhelmed by theW struc-
ture, which then decays at late times to yield the equilibri

FIG. 7. Time dependence of the normalized displacementU(0)
at the midpoint of the cell for various differents, as discussed in
the text. This figure highlights the emergence of new features in
evolution at intermediate~scaled! times for highers.

FIG. 8. Metastables530 W structure, showing the shape of th
well developedn53 transient found in Fig. 6. Note that althoug
the n54 transient should grow most quickly at this value ofs, it
does not in fact dominate, because nonlinear effects delay its n
ation.
a
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V-shaped chevron structure which possesses only two
gions withq561.

Other aspects of these behaviors are shown in ens
figures. In Fig. 7 we show the time dependence of the d
placement at the midpoint of the cell for several differents.
In order to obtain strictly comparable pictures, we choo
runs for which the relative displacement increases at e
times at exactly the same speed with respect to the sc
time. The development of higher harmonics is signaled
sharp changes in the time evolution of the displacemen
this point.

We see that fors51.5 the evolution ofU is straightfor-
ward and monotonic, consistent with Figs. 2 and 3. Fors
510, U increases monotonically and thus normally, thou
the s510 curve lags behind thes51.5 curve. This is con-
sistent with the normal time dependence of the grow
chevron, but with the transientn52 wobble, expected from
Figs. 4 and 5. By contrast, ats520 the lag has develope
dramatically. The curve more or less stops for a long ti
while the n53 structure rapidly develops~Fig. 6!, after it
has been induced nonlinearly by then51 mode. At long
times it disappears again with a rather rapid time constan
the equilibrium structure overwhelms it. Fors530, where
then54 mode dominates,U seems to settle down to a met
stable equilibrium, shown in Fig. 8. This is a metastablen
54 W structure. Similar plots can be drawn for angular fe
tures of the time evolution.

Then in Fig. 9, we show the time dependence of
scaled free energies with increasings. For s51.5 the decay
is steady. For higher values ofs, the relaxation occurs
through a number of rather sharp glitches. These glitc
occur when two neighboring chevron tips or, equivalent
1/2 wall structures annihilate, thus rapidly reducing t
free energy of the system. The final chevron equilibrium i
state dominated by then51 harmonic. Each annihilation
reduces the dominant mode by one. The idea of interf
annihilation will be important and we shall return to it in ou
comments in the final section on the physical structure of
whole phenomenon.

e

le-

FIG. 9. The time dependence of dimensionless free ene
showing the rapid glitches corresponding to interface annihilati
as discussed in the text. Note the logarithmic energy scale, w
disguises the equal magnitude of each energy slippage in no
mensionalized units. The time scalet r5t(s21).
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IV. INTERPRETATION

In order to interpret the results we have reached in
section, it will be necessary also to cast our minds back
the hydrodynamical relaxation discussed in I. This probl
involves the relaxation of a layer variableu(x,t), which is a
proxy for the phase variableW. The dynamics couples thi
variable with the hydrodynamic velocityv. The system may
be regarded as incompressible, which gives rise to the c
dition that¹–v50. This condition arises as a result of co
servation of matter; if the fluid is incompressible, th
divergence-free condition onv articulates the condition tha
the fluid outflow from any region exactly balances the
flow.

Interestingly, however, the layer displacement variablu
is also a conserved variable. This is essentially because
free energy is not concerned with the value ofu itself, but
rather its gradient. Then changes inu are simply governed by
a conservation law, and it is the analogous current wh
responds to changes in the gradient ofu. The equations
~18,19! that articulate these intuitions are but one example
a whole set of coupled order parameter/hydrodynam
equations appropriate to different physical circumstanc
which have been adumbrated by Hohenberg and Halp
@12#.

In that article these authors listed a whole set of mod
that have come to be known simply as ModelsA,B, . . . . ,
etc. It will be useful to recall from this list the physica
significance of the first two. ModelA concerned simple re
laxation of a nonconserved order parameter, in the abse
of hydrodynamic coupling. This model is sometimes kno
as the Cahn-Allen@13# or simply as the time-dependen
Ginzburg-Landau model. In this model an order parame
relaxes to equilibrium with a velocity proportional to th
functional derivative of the governing free energy with r
spect to that order parameter. In modelB, or the Cahn-
Hilliard model @14,15#, there is still no hydrodynamic cou
pling, but now the order parameter is conserved. T
paradigm for such behavior is the relaxation of concentra
fluctuations in a binary mixture, in which case clearly ma
rial of either species cannot be destroyed. The dynamic
affected by the conservation law, and now the relaxation
equilibrium is proportional not to the functional derivative
the governing free energy with respect to that order par
eter itself, but rather to its second gradient.

Model A relaxation is relatively straightforward, and pro
ceeds, roughly speaking, to the nearest equilibrium. In
case of modelB, however, domain formation is rife in th
early stages. This stage involves rapid relaxation to regi
of local equilibria, separated from each other by interfac
Only in the late stages do the domains coalesce as the i
faces meet each other and mutually annihilate. The
stages can take a very long time indeed.

Returning to the specific problem of this paper, the use
mathematical variable has not beenu, but ratherq, the layer
slope. This is zero in the pure bookshelf geometry, and
equilibrium is either plus or minus some equilibrium valu
The free energy has some analogy to the classical I
model, in which a magnetization takes a nonzero value
either plus or minus — in some control parameter regim
The equations of our problem inq turn out to be modelA ~in
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the case discussed in I! and modelB ~the case discusse
here!. This may seem counterintuitive. For in I, weincluded
hydrodynamic coupling, and finished with simple relaxatio
by contrast here, weomit it, and find an effective conserve
variable.

In any event, although we do not have a good intuiti
explanation of why exactly these two cases turn out the w
that they do, the dynamics that we find in I involves simp
relaxation, and this is consistent with what is expected fr
modelA behavior. By contrast, in this study it is as thoug
we had a binary fluid mixture with two equilibria at conce
trationsa and b corresponding toq561. Locally, q is a
conserved variable. This slows down the relaxation and le
to the formation of domains. In our case the domains
regions of oppositeq, and the interfaces between them co
respond to the cusps of theW structures we have found
Indeed the quasi-equilibria are sufficiently stable to sl
down the equilibration process to time scales longer than
are able to observe them.

V. CHEVRON PHASE INVASION

In the preceding sections we have studied the chev
formation taking the process to be homogeneous within
cell — so-called homogeneous nucleation. By analogy w
other nucleation processes, however, we might alternativ
suppose that the original bookshelf structure suffers fr
spontaneous chevronlike defects that serve as nucleation
ters for the chevron structure whens>1. In this case we
would expect the chevron formation not to occur as an
sentially homogeneous process, but rather by an invasio
front between the chevron and bookshelf regions, initia
close to the spontaneous defect, would then advance into
bookshelf region until the chevron deformation filled th
whole system. In this section we model this possibility.

We first derive the nonlinear dynamical equation gove
ing displacementu(x,z,t). We shall then use it to study
permeation waves traveling in thez direction. The funda-
mental equation follows from substituting Eq.~4! into Eq.
~20!:

ut52lpBF S ]

]z
2

]

]x
uxD S 1

2
ux

22uz2e D1
L2

4p2
ecuxxxxG .

~42!

In order to simplify the discussion, we consider on
strains in the near-critical regime. By analogy with Eq.~13!
we adopt the ansatz

u~x,z,t !5
L

2p
A~z,t !@11cos~2px/L !#. ~43!

The quantityA(z,t)5Aeqg(z,t) with Aeq the amplitude of
the fundamental mode, whose static properties we have
amined in Sec. II B. In particular, we have observed th
close to the cell edgeA changes on length scalejp defined in
Eq. ~16!.

The projection of Eq.~43! onto the fundamental mod
yields the time-dependent generalization of Eq.~15!, which
is also the space-dependent version of Eq.~40!:
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3

4p2~s21!
tp

]g

]t
5jp

2 ]2g

]z2
1g2g3. ~44!

We can now rescale time and space variables:

t̃ 85
4p2~s21!

3tp
t, z̃5

z

jp
. ~45!

The fundamental time scalet̃ 8 differs from t̃ by a factor
depending on the chevron numbers. The lengthjp defined
by Eq. ~16! also depends ons. In both cases the rescalin
takes into account critical effects so that the fundame
time and spatial scales, although set by microscopic qua
ties, diverge as the critical points51 is approached.

In the scaled variables Eq.~44! is now the well known
modified Fisher or Fisher-Kolmogorov equation@16#:

]g

] t̃ 8
5

]2g

] z̃2
1g~12g2!. ~46!

This equation is a paradigm for the analysis of syste
that are suddenly quenched into an unstable state, and w
subsequent time evolution is dominated by domain w
propagation. Let us summarize its properties.

The stateg50 is unstable, whereas the statesg561 are
stable. Depending on the initial conditions, chevron struct
formation may occur either by uniform growth~which we
have discussed in Sec. III C! or by domain wall propagation
The properties of the domain walls in this and related mod
have been discussed extensively in the literature@17–21#.
This domain wall lies between the unstable stateg50 and
the stable stateg561, and advances into theg50 region.
The net result is the replacement of theg50 region by ag
561 regime.

The Fisher-Kolmogorov equation~46! sustains many do
main wall solutions with different velocities. A particularl
simple tanh solution@22#, which has been discovered on
number of different occasions, is

g5
exp@3/2~ t̃ 82 t̃ 08!2~1/A2!z̃#

11exp@3/2~ t̃ 82 t̃ 08!2~1/A2!z̃#
. ~47!

This solution describes the advance of the wall dividing
chevron structure from the bookshelf structure. The w
moves into the bookshelf structure with speed 3/A2 and
characteristic widthA2 in dimensionless units.

However, this solution is not unique. There are exact
main wall solutions of the formA( t̃ 8,z̃)5g( z̃2v t̃ 8) travel-
ing with arbitrary velocitiesv>vc @23#, wherevc is the so-
called marginal stability velocity.

However, Aronson and Weinberger@22# have shown that
for the ~rather natural! initial condition thatA( z̃, t̃ 850) de-
cays faster thane2 z̃ for large z̃, the domain wall velocity
approaches the marginal stability velocityvc52. The mar-
ginal stability criterion and its clear physical interpretati
has been given by Dee and Langer@23#. A detailed study of
the Fisher-Kolmogorov equation in physical terms has b
al
ti-
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e
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carried out by Saarloos@16#. Some experimental studies o
these traveling waves in a liquid crystal context can be fou
in @24,25#.

Thus, nothwithstanding the multiplicity of the solutio
manifold, in practice both numerical and physical doma
walls are expected to travel at the velocityvc52.

Retranslating the nondimensionalz̃ and t̃ into physical
variables using Eq.~45!, we find that the nondimensiona
velocity vc52 corresponds to physical velocity:

vwall5
4pBlp

L S e2ec

3 D 1/2

vc . ~48!

A numerical estimate ofvwall , takinge51026, L51023 cm,
andBlp51025 cm2 s21 @8# yields vwall;1024 cm s21. The
physical width of the wall is;jp .

We have also carried out some unsystematic but revea
simulations of the late stages of domain-wall driven nuc
ation. We find that if a bookshelf region is invaded from t
left by a g511 chevron region and from the right by ag
521 region~or vice versa!, then the domain walls collide
when the bookshelf region is completely overwhelmed. T
collision process leaves behind, on a time scale;tp8
5tp /(s21), a stationary21/11 wall of width ;jp . This
domain wall is closely analogous to the healing region clo
to the cell edge discussed in Sec. II B. Similarly, if the boo
shelf region is invaded from both sides by chevron regio
with the same polarity, then domain-wall collision leads to
homogeneous static chevron region. The memory of the
lision disappears over a time scaletp8 . If, however, a small
~one-dimensional! g521 region is trapped within two
largerg511 regions, then the insideg521 region is de-
stroyed on rather long time scales. Equivalently, t
21/11 domain walls attract weakly. We have not, howev
carried out detailed studies of this process.

VI. SUMMARY AND CONCLUSIONS

In this paper we have continued the study of the dynam
of chevron formation in a Sm-A phase following a quench o
a bookshelf structure into an unstable state. The dynam
equations are derived from the standard formulations
Sm-A liquid crystal hydrodynamics, although this set of p
pers is, to our knowledge, their first application in this co
text.

This equilibrium chevron phase results from the misma
between the layer spacings in the bulk and at the interfa
Our free energy is closely related to that used by one of
earlier in a study of the statics@6#, and also to that used b
Limat and Prost@5# in an analogous study.

The dynamics is strongly dependent on the conditions
the edges of the cell. In principle, there is strong coupl
between layer relaxation and hydrodynamic flow. We ha
found in paper I of this series that it is the hydrodynam
flow which is normally expected to play the major role in th
dynamics of the layer distortion. In this subsequent paper
have shown that when mass flow is forbidden by the c
edge conditions, the dynamics of the formation of the ch
ron structure occurs by layer permeation. In this process,
layer structure diffuses through the stationary fluid.

This process is governed by the nonlinear modified Fis
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equation and is extremely slow. Even in the case of a v
thin cell,L51023 cm, it can take several hours. In principl
the chevron phase may form uniformly over the who
sample, or it may be nucleated from a chevronlike defec
the initial bookshelf structure. In the latter case the invas
front is extremely slow:v;1024 cm s21. At this stage it is
difficult to make a definite prediction between these two s
narios.

However, the most striking prediction concerns unifo
chevron formation. We have shown that when hydrodyna
cal interactions dominate, the chevron formation is mo
tonic and is akin to the relaxation of any nonconserved or
parameter; it exhibits modelA behavior. The amplitude o
the chevron grows in time starting from an initial fluctuatio
In that case, in some sense, the chevron formation is not
monotonic, but also monotonous.

If the hydrodynamical interaction is disrupted, howev
as discussed in this paper, not only is the chevron forma
many orders of magnitude slower, but its qualitative nat
changes for sufficiently deep quenches. Now the relaxatio
as though the angular variable were conserved and it exh
modelB behavior. For shallow quenches to moderate ch
ron numberss<5, the chevrons grow steadily toward th
s

B.
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conventionalV shape; no surprises there. For highers, by
contrast, it seems that there are remarkable long-las
quasi-metastable intermediateW-like structures. We specu
late that very slight cell defects might stabilize these mu
chevron-tip structures.

Finally, this work raises a number of interesting questio
to which we hope to return in further research. First, o
condition of zero flow with fixed edges is clearly an idea
zation. We anticipate that a more detailed study of the
drodynamics would yield a perturbation structure, with flo
induced by a coupling parameterd25tv /tp;1028, and
with the possibility of compressibility effects playing a no
negligible role. Second, the extension of this kind of proc
to the Sm-C phase, in which there are extra orientation
degrees of freedom, may or may not be straightforward.
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