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This paper continues a study of the dynamics of chevron formation in snfediticid crystals in samples
with boundary conditions apparently favoring the bookshelf structure, with uniform layers perpendicular to the
sample cell plane. The chevron structure that arises when the sample is cooled results from the mismatch
between preferred bulk and surface layer thicknesses. In a previous paper we considered relaxation driven by
the strong coupling between layer deformation and fluid flow. In this paper we discuss the alternative scenario
in which boundary conditions suppress this coupling. Layer deformation now occurs by layer relaxation in the
absence of fluid flow. This process is extremely slow and is governed by the nonlinear Fisher-Kolmogorov
equation. Chevrons do form under some circumstances, but the process is irregular, and quasimetastable jagged
multi-edged multi-tip-like structures can occur on intermediate time scales for suitable layer strains. In the
absence of surface layer pinning, layer slippage occurs at the surfaces. We also examine the possibility that
deformation may occur through a wave of invasion destroying the bookshelf region.
[S1063-651%9910509-9

PACS numbgs): 61.30.Cz, 42.79.Kr, 64.70.Md, 83.70.Jr

. INTRODUCTION cal layer spacingjg and the reciprocal layer spacimgim-

posed by the surface interaction. We can define the strain
This paper is the second of two studies of the dynamics ok 1 —g/q;. How the strain arises is more of a mystery. In
chevron formation in smectié-liquid crystals. We shall re-  the simplest hypothesis, it follows from layer pinning at the
fer to the first studyf1] as |. The chevrons are the result of houndaries while at the same tinig and q change differ-
layer buckling that occurs when the liquid crystal is placed inently with temperature. More elaborate hypotheses do not
a sample with homogeneous boundary conditions that ondemand this postulate and ascribe the layer mismatch to
would naively expect to favor a so-called bookshelf geom-vastly differing time scales of surface and bulk relaxation. In
etry, with uniform layers perpendicular to the sample planeany event, in many circumstances the chevrons do form, so
There is now good evidence that the chevrons occur as l@ng as the strain is greater than a critical strain
result of mismatch between bulk and surface layer thick-
nesses. e.=4m°KIBL?,
We show the chevron geometry in Fig. 1. We refer the
reader to other papers for a more detailed experimental anghere K and B are the smectic bending and compression
theoretical backgrounf2—7]. We note here only that there elastic coefficients andl is the cell thickness. In previous
are a considerable number of experiments, most notably iwork we have found it useful to nondimensionalize this
the related smecti€ phase, and that theoretical work on the strain in terms of the so-called chevron numiél, o
statics seems to confirm the picture presented above. =¢ele..
The consensus is that the chevron structure is the conse- In | we developed a formalism to account for the chevron
guence of the mismatch between the natural smectic recipr@tructure dynamics for a quenched system for which the
bookshelf structure is no longer stable. In this picture, the
chevron structure develops from thermal fluctuations follow-
*Permanent address: Department of Physics, University of St. Péng spontaneous symmetry breaking. The resulting set of
tersburg, St. Petersburg 198904, Russia. equations involves an equation of fluid motion and a relax-
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2m/q The plan of the paper is as follows. In Sec. Il we give the
x necessary background to the equilibrium chevron structure.

x=Lf2 Then in Sec. Il we provide a very brief summary of paper |
and exhibit the equations that govern our study. We then
present the results of a study of homogeneous nucleation of

7 the chevron phase. Then in Sec. V we present some calcula-
e/ tions on the domain wall motion model of the formation of
the chevron phase. Finally, in Sec. VI we combine these
x=-L/2

studies, together with paper |, and draw some brief conclu-

sions.
21/ qp

FIG. 1. Picture of the chevron structure, with cell of width Il. STATICS
and showing natural layer wave numlagy, surface-imposed wave .
numberq, conventions foix andz axes, and layer angle. A. Elastic energy

We recall some basic notions from I. The smectic layer
ation equation for the smectic order parameter in the movingtructure is described by a phase functit/(r,t) [6], so that
system. These equations are coupled, with the forcing term@ layer is a surfac&V(r,t)=const. The directon, which
in the order parameter equation and in the equation of mopoints along the average local orientation of the molecules, is
tion proportional to each other. It turns out that, if it is pos-a fast variable, with relaxation time 10" 7 s [10]. On the
sible, the layer displacement of the chevron primarily occurdime scales considered in this paper, the elastic energy can be
in the fluid motion. The process whereby the layers moveexpressed in terms &% only. The energy density is given by
with respect to the fluid, a process knownpesmeation8]  [9]
in the liquid crystal literature, is some eight orders of mag-
nitude slower than the fluid-induced motion. The coupling ()~ Tprq-2(yw)?— 172+ Kqz2(V2W). (1)
between layer and fluid motion shortens the time necessary 8 Ge 2 Ge '
for chevron structure to develop from weeks to milliseconds.

In this paper we continue the study which we began in |, We perform calculations in a Cartesian coordinate system
by considering a situation in which the boundary conditionsr =(X,y,z), with conventions shown in Fig. 1. The St-
at the ends of the cell are such as to suppress almost entirdiguid crystal is confined between two plates locatecat
fluid motion. We may suppose that whereas in | the fluid was— L/2 andx=L/2. The layers are stacked along thdirec-
free to slosh around in the plane of the cell, in contrast nowjon because the boundary conditions impasez at the
the liquid crystal is enclosed by fixed boundaries at the edggurfaces. We take the system to be uniform alongythgis,
of the cell. The result is to reduce the number of equationsso that physical quantities are functionsxgf only.
for now we must consider the smectic order paraméter The absolute free-energy minimum in an unconfined but
this case the layer displacempmélaxation alone. In prin-  oriented system occurs fow=qg(z—z,), which corre-
ciple, this appears to be a simplification. In practice, how-sponds to a stack of smectic layers perpendicular tozthe
ever, our previous study benefited from the existence of @xis. The quantityggz, is an arbitrary phase factor. In the
small parametes,= 7, /,~10"°, wherer, ,7, are, respec- pookshelf structureqs is replaced by the surface-imposed

tively, the characteristic viscou$luid) and permeation re- reciprocal layer spacing. Deviations from the bookshelf
laxation times. This small parameter rendered some dangestructure can be described by

ous nonlinear terms irrelevant in our previous paper, but
these terms return with a vengeance to haunt us in this study. W=q[z—u(r)], 2)
In I we found that the development of the chevron was
rather straightforward. The chevron tip developed almost acyhereu is the layer displacement.
cording to a universal law, when suitable normalizations and The critical straine, is a small parameter. For a cell with
time scales were considered. The chevron tip followed g —2% 103 cm and\=K/B~3x10"7 cm, we find €.

monotonic tanh-like curve as a function of time. ~1075. The strain is defined by the layer mismatch,
Once fluid flow is suppressed, however, apart from the

necessary dramatic slowing down of the relaxation process, q

this quasi-universality no longer holds. We shall find that e=1-—, 3

under some circumstances there will be surface layer slip- s

page, leading to uniform tilted layers. If this is forbidden, . . . .
chevrons do form. However, they form in an irregular Way,YVh'Ch is the fractlpne_ll_(_jlfferenc_e between the natural and
with the intermediate states—depending on the value-of |mp205(3d layer pen(_)du_:ltles. It WI|| be useful tp note that 1
sometimes developing more than one layer bend before fi- d°/da~2¢. Substituting Eq(2) into Eq. (1) while truncat-
nally settling down to the uniform chevron state. In additionind at lowest order ire, u,, andu, yields the following
we shall see that the free energy relaxation involves longe-expression of the free-energy functional in terms of the
periods of stasis, with some periods of dramatic rapid collocal layer displacements:
lapse. We shall also see that one plausible scenario is that the

chevron creation takes place through an invasion process, F:}J dsr[B(luz
rather than through homogeneous creation. 2

: 4

2
5 UF— U, e) +K (Uyy)?
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We have dropped terms linear im,, and uf, which are  <1. We first briefly recall the analysis for a system uniform

higher order in the small quantity. in the z direction for this regime, and then pass to the more
This is the free energy we have used in |, apart frominteresting nonuniform case.

allowing inhomogeneities in the direction not considered In the uniform case Eq6) can be linearized to yield

there. Setting==0 gives rise to the expression for the elastic

free energy with a nonlinear term that guarantees invariance L2

with respect to rotationf8]. Furthermore, putting,,=0 and ot ﬁecuxxxx:o' ©)

0=u, in Eq. (4) yields the Limat-Prost moddl5] of the

chevron structure. . The solution of this equation satisfying the boundary condi-
Equilibria of the system are defined by tions is
A (5) — Ay 14002 10
U u(x)—ﬁ 1 +cosT . (10
or, equivalently, This is the principal mode in a Fourier expansion of the full
chevron deformation.
J 9 1 L2 The amplitude ofA; is then determined by taking the
(E_&UX Eui—uz—e +mecuxxxxzo- (6) weakly nonlinear limit of Eq.(6), or by substituting the

variational form(10) into the functional(4). In either case,

) o this yields a Ginzburg-Landau equation #y:
We briefly recall from | the equilibrium structure, for

which u,=0. Elsewherd5,6], this has been considered in 3 .

terms of the layer tilt angle®, with u,=tané~ 6. The ap- g ArtAule.—€)=0, (13)
proximation is true for small tilts, which in practice is always

the case. Here we reformulate the problem in terms of thgih solution

displacemenu. In principle, the energy is minimized by a

displacement fieldu(x)=+2ex. This, however, requires 2(e—€c)
slipping of the smectic layers at the bounding plates. This Aj=%2 \/T. (12
seldom occurs, because the boundary conditions seem to pin

the layers at the interfaces: where the sign imprecision corresponds to the two equivalent

opposite symmetry deformations. This analysis corresponds
u(=L/2)=0. (7 to Sec. IV B and Eq(59) of I.
We now examine the behavior of this deformation close

infinite anchoring: boundary conditions compel the layers to d@eactly book-
shelf, and thus with deformatioA; =0. The deformation in
Uy(=L/2)=6(=L/2)=0. (8)  this regime can now be expressed in terms of the principal
mode,

The interplay between the bulk elastic energy and bound-

ary conditions yields the chevron structure. There are two L 27X
wide regions in which the layers are flat, but tilted so as to u(x,2)=5—-A(2)| 1+cos1—|, (13

have the correct packing. In the middle of the cell there is an

interphase region of thickness\2y2¢ [5]. There are also where the amplitude of the deformation is described by the

two narrow high curvature regions at the cell walls, whosefunction

thickness depends on the surface anchoring, and which dis-

appear as the anchoring strength vanishes. A(z)=A10(2), (14)
This analysid5,6] was actually carried out in terms of

and the nonslip boundary conditions were satisfied by reand its spatial dependence kyz) with g(0)=0 (i.e., no

stricting A(x) to be an odd function. This procedure is con- deformation andg(«) =1 (i.e., full deformation.

venient for the study of stable states, but fails for dynamics. The behavior of the deformation is now described by the

We thus return to a study of the governing differential equadifferential equation,

tion in terms of displacement However, we emphasize that

this is afourth-order equation inu, rather than asecond- ) 9°g 3

order equation in6. The significance of this remark will & E*—g—g =0, (19

become clear later in our study.

which generalizes Eq11) to the nonuniform cell. The pen-
B. Near-critical strain: Statics etration depthé, is defined by

The Euler-Lagrange equatidf) can in general be solved L 3
only numerically. However, insight can be gained by de- - _
tailed analysis for strains just above the critical straife, P27 Ve—e

(16)
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The solution to Eq(15) satisfying these conditions is given whereF is defined by Eq(4). The functional derivative is
by
SF g 9F 9 JF 3> OF

—:————__+_
zZ ou Jx du 0z du 2 du
g(z)=tam‘< \/Eg ) (17) X z X XX
P

The chevron structure develops from the wall over a charac- IX
teristic Iength\/zgp. We shall show later in this paper that
the penetration dept, also plays a role in moving fronts
between deformed and undeformed regions.

1%

1 2
B §Ux_uz_f Uy — KUyyx

(21)

1
B(§U>2<_UZ) .

In the homogeneous nucleation case this reduces to:

+—
Jz

IIl. DYNAMICS: HOMOGENEOUS NUCLEATION

J
A. Basic equations U=Ap,—
P ax

1 2
B FUcT€ Uy — KUy |- (22
In 1 we have discussed in detail the dynamical equations
that govern the chevron formation. These equations involve We remark as a footnote to this discussion that this TDGL
Navier-Stokes equations that govern fluid motion, and auarantees positive energy dissipation, as the following ar-
time-dependent Ginzburg-Landau equation governing pergument demonstrates. Using Eg0), the energy dissipation
meation. By far the dominant effect of layer mismatch arisegs given by
in the Navier-Stokes equation, and the effect of the
Ginzburg-Landau equation is a negligible long-time relax- dF [ 5 6F
ation correction. E‘j dor syt
We now suppose the mass flow to be strictly forbidden as
a result of the edge conditions. As a result, only one of theThus the free energy of the system always decreases until a

:—xglj d3ru?=o0. (23)

full set of hydrodynamic equations is relevant, local or global minimum is reached.
Physically, Eq.(22) describes how the molecules rear-
ou Va=V.J (18) range themselves, forming new layers during the formation
— —vy=V.],

of a chevron structure in a cell with closed ends. In this
process the smectic layers can be thought of as moving
with v the velocity component in the direction andJ a  through the fluid. The process is expected to be very slow

phase flux term: because the permeation constant is typically small.
oF B. Time scale and nondimensionalization
Je=Npmor—. (19 o . |
oViu We first estimate the relevant time scale. To do this, we

, , , linearize the governing equatidg?2),
The quantity\, is the usual permeation constant of $m-

hydrodynamicg[8], which relates the layer flux through a Ur=— N p(€B Uyt KUy, (24

stationary medium to the relevant thermodynamic force. In a _ _

more general case, this equation could also include a ter@nd taked,~1/L. If e<e there is no chevron; otherwise we

proportional toVT, but in this paper we shall assume for take the smaller of two possible times, which involves the

simplicity that the temperature is constant throughout theésecond term, replacing by ~e.BL?. Thus we derive the

cell. Equation (18) is just a time-dependent Ginzburg- permeation time scale first discussed in the Introduction:

Landau(TDGL) equation for the conserved variahle ) A
We now make some remarks about the zero-mass-flow L L

condition. For homogeneous chevron nucleatiogis uni- T”_ECB)\p_ 4\ K

form in the z direction by definition. This condition, com-

bined with the incompressibility conditioW -v=0, forces  Taking e=10"° L=10"3 cm andB\,=10"° cn?s ! [8],

v, to be uniform in thex direction. But as the fluid is fixed at we find the time scale of 10s.

each face of the cell, we necessarily must haye 0. If the We thus nondimensionalize the time variable by dividing

edges of the cell are fixed, then homogeneous nucleatiopy 7,,. We now introduce dimensionless parameters:

demands/;=0. Thus in this case there can be no fluid mo-

(25

tion at all. The situation can, in principle, be complicated in ~ X
the case of inhomogeneous nucleation, which we shall dis- X= L’ (263
cuss in the next section, but even here it turns out that fluid
motion can be neglected. ~ t
Setting vi=0 we obtain the time-dependent Ginzburg- t=—, (26D
Landau equation, P
SE ~ u(x,t)
U=~Np5o (20) U(x,t) V2 (260
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- UXTD  ext) present notorious stability problems within finite difference
J(x,t)= — = —. (260 schemes. As a result, we have used a spectral method, which
X V2é€c we now describe briefly.

The manifold of solutions¥(x) is explicitly restricted to

Equation(20) can be simply reexpressed in this new nota- ~ o
. 20 Py P functions odd inx. This choice guarantees thidi(x,t) sat-

tion, I . "
isfies layer nonslip conditions. Then we recall that an odd
0 SF function satisfying the boundary condition equatid8)
U=— — (27) U(*=1/2)=0 can be expanded in a sine Fourier series:
tgx 09
where now the dimensionless free energy and its functional ﬁ(x,t)zz,l An(t)sin(2nx). (3D
derivative with respect to scaled angle are,
The governing equatiof29) is apartial differential equation
vz 11 1 in space and time. Using standard projection methods, it can
_ = (92— )2 92 . . : e
F= zf_mdx 2(19 o)+ 42 CoAr (283 now be rewritten as a set of nonlinear first-oradedinary
differential equations governing the time evolution of the
sF Fourier coefficients4,(t).
= 0)— — 9%, (28b) Following some straightforward biextremely) tedious
oY 472 algebra which we omit, we obtain

whereo = €l €. is the chevron number discussed in the intro-  dA, - X ~
duction[6]. = =4m'nX(0=n) A2 > HoamAchAn,
The displacement) is a natural hydrodynamic variable. e

Nevertheless, as in | we find it more useful to write down the (32
%ynammal equation in terms of the scaled angular vanabk\eNhere the coefficientsl ., are defined as
5 9.2 172 _ - -
J° OF IIm=—47“n f dxsin(2mwnx)sin(2wkx)
_ _ 2 2 nklm
m_ﬁﬁ_ﬁ_(?’ﬁ —U)ﬂ};+6ﬁﬂ;—mm —12
(29 X sin(271X)sin(2 7mx). (33
However, unfortunately not all solutions of E@Q9) sat- In the weak chevron limit, only thed; equation is rel-

isfying the boundary condition Eq@8) 9(*=1/2)=0 are evant, and other modes can be ignored. The permeation-
valid. The change in variable frold to 4 has caused the driven chevron development will turn out to be qualitatively
information about slipping at the interfaces to be lost —exactly the same as in the hydrodynamically driven case dis-
equivalently, the informationJ(*=1/2)=0 has not been cussed in I. Only the time scale is slowgsy a factor of
used. This information can be retrieved by applying the non4¢°). In this regime other modes decay. Because exgn

local condition remains small, the nonlinear terms in the equations for
A,,n=2 remain unimportant. As a result, these equations

fl’z T3 xT)=0 50  'emain essentially linear and independent.
12 x3(x,1)=0. (30 At early times, soon after the bookshelf structure has been

quenched into an unstable state, the linear limit of B8) is

This integral condition presents formidable technical mathSufficient forall values ofo-. The equations are independent.
ematical difficulties which in general outweigh the advan-For low enoughn the amplitudesA, grow, and for highn -
tages of rephrasing the problem in termsf Fortunately, —they decrease, in each case with its own characteristic time.
however, in this case the principal mode~sin(27%) re- However, for these higher values of the nonlinear terms
sponsible for the formation of the chevron structure is an Odéaventually lead to mode coupling.

f ion in%. In addition. Eq.(29 ) | dd This interaction between the harmonics can only be ne-
i:\mgtlon inx. In addition, Eq.(29) contains only terms o glected for very weak chevrong(g-—1)|<1), and at early

. ~ times. Otherwise it must be taken into consideration. In prin-
Thus any solutiond(x,t) which is an odd function at  ciple, there is an infinite set of nonlinear ordinary differential
=0 remains odd for all times and then satisfies E20)  equations. In practice, it is necessary to truncate this set of
automatically. The descriptions in terms bf and 9 are equations at some harmoriit We can estimat&l by noting
equivalent so long as we confine our discussion toddthd ot the nth  harmonic  resolves length scaleaX,

evenU. ~(27n)~ 1. However, from Eq(28a we can see that the
characteristic length over which changes occur in the static
C. Spectral analysis chevron isAé~ (2+/o) ~1. We shall not require values of

The governing equatiof9) is a fourth-order nonlinear in the harmonic expansion that cause changes on length
differential equation. Fourth-order differential equationsscales shorter thaf PuttingAé~ Axy yields N~ /2.



4204 A. N. SHALAGINOQV, L. D. HAZELWOOD, AND T. J. SLUCKIN PRE 60

D. Early-time analysis sponds to the amplitudd,. Equation(32) then reduces to

At early times, soon after the bookshelf structure has beeff1® familiar time-dependent Ginzburg-Landau form:

guenched into an unstable stafleis small and the evolution

may be described by the linearized permeation equation. The d_“ill 42| (0—1) A — §A3 ' (40)
evolution of thenth harmonic is described by 47 -

9 An 2.2 2 . . .

5 =47 n*(oc—n)A,= ypA,. (34 This mode evolves continuously and monotonically from an

initial fluctuation up to.A;()=2+y(o—1)/3. In the limit
—1)<1 only this mode is important. Equatidd0) has

These equations display interesting features and ma X
q pay g y §gts of solutions of the form

compared with the analogous case discussed in I. In that ca
mass flow is permitted; the? contribution toy, governs the
dominance of the modes with increasiag This differs dra- _ (o—1)|12 o
matically from the evolution of the equivalent modes in I. In Al(t)=2( ) {1+exd —87%(c—1)(1—1tg) ]} Y2
that case the factor of #°n? is absent. 3 a1
The consequence of this difference is as follows. If, as in (4D)
[, mass flow is permitted, the fundamental harmonic is domi-
nant at early times foall o, in the sense that the growth rate
of the fundamental mode is always larger than those of th
other modes. In the case discussed in this paper, this is
longer true. Nowy, has a maximum around= \/¢/2. The
dominant mode is that for which, roughly speaking, integer

Note thatt, is the time at which the amplitude reaches half
fis final value, rather than the time at which the time evolu-
Nfon starts. At the initial time the amplitude is very small, and

this corresponds to sontg<t,. The size of the initial fluc-

is close to this optimal value ang, is largest. tu_atio_n affe(_:t_s~t,, bL_Jt the subsequent development is other-
Specifically, thenth mode becomes dominant when it just WIS€ Insensitive to it. . _ _
begins to grow faster than the { 1)th mode. This will oc- This is close to a tanh-like form, starting close to 0, in-
cur when creasing steeply arounti=t,, and then stabilizing at the
final equilibrium value. Final behavior is exponential with a
¥Yn= Yn-1 (39  characteristic formation timer,/[87*(oc—1)], which di-
) verges at the critical poink=1. The characteristic time for
or, equivalently, initial growth is faster than this by a factor of 2.
) ) ) 5 The weak chevron displacement has the cosine form
n“(c—n%)=(n—-1)To—(n=1)7]. (36 given by Eq.(10). As o is increased, however, the equilib-

rium chevron displacement sharpens up and approaches its

Thus characteristicV shape with small rounded healing regions
2 V21— Td_ (14 close to the walls and at the chevron tip. In this regime the
oln”=(n=1)7=[n"=(n=1)7, @37 time evolution is analogous to the hydrodynamical case dis-
or cussed in |, although on a dramatically longer time scale.
The spatial structure of the dominant mode is, however, just
o,=n%+(n—1)2=2n%-2n+1. (38)  asin|. However, as we have seen in the last sectionr as
passes first through the thresholdwf and then past higher
This yields the following results fow,, for low n: o,, the behavior changes. It is to this evolution behavior we
turn in the next section.
o, |15 (1325 10
) © — =15
n|1(2(3 (4 (39
(c)
The o,=1 case marks the critical value for any chevron L
formation. For deeper quenchess larger, and then foo, 5 0.5
<o<on,1, thenth mode dominates. In this case the system
is likely initially to develop spatial modulations i with ®)
wave number zZn.
@

E. Fundamental mode behavior over long times 0.0 0 10

To look at the long-time limit we start by considering the p
weak chevron case. As discussed above, in this regime only FiG. 2. Time development of the=1.5 chevron, showing the
the A; sine-wave term in the expansi@l) is relevant. This  monotonic time dependence of displacemehtTime (a) is the
limit obtains in the near critical regior=1 whose statics initial fluctuation. Times(b) through (d) exhibit illustrative snap-
were discussed in Sec. |l B. The amplitudg then corre-  shots at consecutive later times.
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1.0 1.0
() —_— =15 (@ —_ =12
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05 05
(c)
{b)
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P P
FIG. 3. Time development of the=1.5 chevron, showing the FIG. 5. Time development of the=12 chevron, showing the

monotonic time dependence of nondimensionalized amiglever  time dependence of nondimensionalized anglever half of the
half of the cell. The other half of the cell is a mirror image of this. cell. The other half of the cell is a mirror image of this. Graph
Graph legend as in Fig. 2. legend as in previous figures. Note the transient development of the
n=2 mode.
F. Long-time behavior at higher chevron number
) ] o In our calculations we start with an initial fluctuation of
For o= o, the time evolution changes qualitatively, as a.9,=10"% in the fundamental mode, and this appears to re-

result of the dominance of higher harmonics. We have nowyict the solution manifold. By this we mean that we observe
solved the set of first order spectral differential equationgyominance by modes with lowerthan the linear early-time
numerically using the fourth-order Runge-Kutta methodgnaiysis might predict. With no initial fluctuation at all there
[11]. The number of model was chosen so that the values \jj| he no subsequent time evolution. An initial small fluc-
of A, were insensitive to the adding of extra modes. In adyation in the fundamental mode is sufficient to induce sub-
dition, Ay, 1 IS negligible. The equilibrium solution can be sequent evolution in higher modes through the nonlinear
further checked by observing that in this case the quantity (eyms. These induced modes then grow, and at sufficiently
high n grow faster than the fundamental mode. However, the
I(x)= if}x(x)z— E(ﬁ(x)z—a)z ex;e.n_t to which fastgr mode growth can compensate for lack
A 2 of initial mode amplitude depends very crucially on the mag-
nitude of the initial conditions, rounding errors and so on.

) , . o , In the figures we show how the time development
remains essentially constant. This quantity is analytically &Xthanges aswr is increased. In Figs. 2 and 3 we show the
actly constant in the static case. evolution of the scaled displacemedtand the nondimen-

The details of the numerical results are extremely sensigjn4jized angled over the whole width of the cell, forr
tive to the initial conditions and the quench severity. In an_ 1.5. This lies well inside the region where the growth of

infinite system with a random initial fluctuation, the system,e fndamental mode is fastest. Indeed, here the relatively
would develop all modulation lengthsaZn consistent with |5\ v alue ofo means that the shape of the equilibrium chev-

2 . B N -
o=n?, with the fastest-growing mode af~ ¢/2. Which ;1 is ot well developed, antt does not closely approach
mode dominates the intermediate time behavior depends Sefls natural values oft 1 except at isolated points. We see

sitively on 'hrc])whthe |r|1|t|.al amplltuc:es of |hnd|V|duaI modes that, as for the very weak chevron case, and as in I, the
compete with their relative rates of growth. chevron growth toward its equilibrium shape is monotonic.

0 (c) — =20

1.0

Ly Ly (¢)

Q05 Q05
3 3
(b)
0.0 0.0 @
-1/2 0 12 -1/2 0 12
P P
FIG. 4. Time development of the=12 chevron, showing the FIG. 6. Time development of the=20 chevron, showing the

time dependence of displacement Times (a) through(d) repre-  time dependence of displaceméut Graph legend as in previous
sent consecutive snapshots as in Fig. 2. Graph legend as in previofigures. Note the transient but now relatively long lasting develop-
figures. ment of then=3 mode.
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FIG. 7. Time dependence of the normalized displacer) FIG. 9. The time dependence of dimensionless free energy,

at the midpoint of the cell for various differemnt, as discussed in showing the rapid glitches corresponding to interface annihilation,

the text. This figure highlights the emergence of new features in thas discussed in the text. Note the logarithmic energy scale, which
evolution at intermediatéscaled times for highero. disguises the equal magnitude of each energy slippage in nondi-

mensionalized units. The time scdle=t(o—1).
In Figs. 4 and 5 we show analogous graphs dor 12.

We recall from Eq.(39) that for this value ofv, the fastest \/_shaped chevron structure which possesses only two re-
growing mode is then=2 mode. The influence of the ions with 9=+ 1.

=2 mode can be discerned in these figures, causing

slightly wobbly chevron shape at intermediate times in Fig.
3. The angular plot exposes this behavior more easily; osci
lations in ¥ with wave number 2 are visible at intermediate
times. However, the counterpart of the rapid growth of these

Other aspects of these behaviors are shown in ensuing
“figures. In Fig. 7 we show the time dependence of the dis-
placement at the midpoint of the cell for several different
In order to obtain strictly comparable pictures, we choose

modes at early times is their rapid disappearance at latdH"S for which the relative displacement increases at early
times. This occurs here, leading to a late-time conventionaf €S at exactly the same speed with respect to the scaled

chevron, withd now saturated over most of the cell width, Mme. The development of higher harmonics is signaled by
with a relatively narrow chevron tip and with healing reglonsSharp changes in the time evolution of the displacement at
close to the cell walls, as expected. this point.

In Fig. 6 we show the evolution of the layer displacement We see that forr=1.5 the evolution oU is straightfor-
0n|y for c=20. Here theh=3 mode has the fastest growth, ward and monotonic, consistent with FIgS 2 and 3. bor
and indeed at intermediate times the displacements foivh a =10, U increases monotonically and thus normally, though
shape corresponding to this mode. In this structure there aite o0=10 curve lags behind the=1.5 curve. This is con-
several(quasi-equilibrium regions of 9=~ *+1 separated by sistent with the normal time dependence of the growing
chevron-tip structures. At early timéaot shown, the mul-  chevron, but with the transiemt=2 wobble, expected from
titip structure has not yet developed, and only the fundamenFigs. 4 and 5. By contrast, at=20 the lag has developed
tal mode grows. This is then overwhelmed by ¥¥estruc-  dramatically. The curve more or less stops for a long time
ture, which then decays at late times to yield the equilibriumyhile the n=3 structure rapidly develop&ig. 6), after it

has been induced nonlinearly by time=1 mode. At long
0.3 — 0 times it disappears again with a rather rapid time constant, as
the equilibrium structure overwhelms it. For=30, where
then=4 mode dominates) seems to settle down to a meta-
stable equilibrium, shown in Fig. 8. This is a metastable
=4 W structure. Similar plots can be drawn for angular fea-
tures of the time evolution.

Then in Fig. 9, we show the time dependence of the
scaled free energies with increasimg For o= 1.5 the decay
is steady. For higher values af, the relaxation occurs
through a number of rather sharp glitches. These glitches
0.0 occur when two neighboring chevron tips or, equivalently,
-1/2 0 1/2 +/— wall structures annihilate, thus rapidly reducing the

P free energy of the system. The final chevron equilibrium is a

FIG. 8. Metastabler=30W structure, showing the shape of the State dominated by the=1 harmonic. Each annihilation
well developedn=3 transient found in Fig. 6. Note that although reduces the dominant mode by one. The idea of interface
the n=4 transient should grow most quickly at this valueaafit annihilation will be important and we shall return to it in our

does not in fact dominate, because nonlinear effects delay its nucl€omments in the final section on the physical structure of the
ation. whole phenomenon.

UUe
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IV. INTERPRETATION the case discussed in &nd modelB (the case discussed
| der to int t th it h hed in thi here. This may seem counterintuitive. For in |, wecluded
n order to interpret the results we have reached in ISf1ydrodynamic coupling, and finished with simple relaxation;

section, it will be necessary also to cast our minds back @ .,nirast here, wemit it, and find an effective conserved
the hydrodynamical relaxation discussed in I. This problem z iape.

involves the relaxation Qf a layer variahluéx_,t), which is a In any event, although we do not have a good intuitive
proxy for the phase variable/. The dynamics couples this explanation of why exactly these two cases turn out the way
variable with the hydrodynamic velocity. The system may that they do, the dynamics that we find in | involves simple
be regarded as incompressible, which gives rise to the conelaxation, and this is consistent with what is expected from
dition thatV-v=0. This condition arises as a result of con- model A behavior. By contrast, in this study it is as though
servation of matter; if the fluid is incompressible, the we had a binary fluid mixture with two equilibria at concen-
divergence-free condition ow articulates the condition that trations« and 8 corresponding ta%=*1. Locally, ¥ is a

the fluid outflow from any region exactly balances the in-conserved variable. This slows down the relaxation and leads
flow. to the formation of domains. In our case the domains are

Interestingly, however, the layer displacement variable regions of opposité), and the interfaces between them cor-
is also a conserved variable. This is essentially because thigspond to the cusps of th&/ structures we have found.
free energy is not concerned with the valuewoitself, but ~ Indeed the quasi-equilibria are sufficiently stable to slow
rather its gradient. Then changesiare simply governed by down the equilibration process to time scales longer than we
a conservation law, and it is the analogous current whici'€ able to observe them.
responds to changes in the gradient wfThe equations
(18,19 that articulate these intuitions are but one example of V. CHEVRON PHASE INVASION
a whole set of coupled order parameter/hydrodynamical
equations appropriate to different physical circumstance
which have been adumbrated by Hohenberg and Halperi
[12].

In that article these authors listed a whole set of model
that have come to be known simply as Mod&ls8, ... .,
etc. It will be useful to recall from this list the physical
significance of the first two. ModeA concerned simple re-
laxation of a nonconserved order parameter, in the absen
of hydrodynamic coupling. This model is sometimes known
as the Cahn-Allen13] or simply as the time-dependent
Ginzburg-Landau model. In this model an order paramete
relaxes to equilibrium with a velocity proportional to the
functional derivative of the governing free energy with re-
spect to that order parameter. In modgl or the Cahn-
Hilliard model [14,15, there is still no hydrodynamic cou-
pling, but now the order parameter is conserved. The tal tion foll f bstituting E6) into E
paradigm for such behavior is the relaxation of concentratio zg)rf al equation follows from substituting E€) into Eq.
fluctuations in a binary mixture, in which case clearly mate-*=""
rial of either species cannot be destroyed. The dynamics is
affected by the conservation law, and now the relaxation to ,, _ “\.B (i_ "y )(luz—u _

A . . . —_— t X x Uz €
equilibrium is proportional not to the functional derivative of dz X 2
the governing free energy with respect to that order param-
eter itself, but rather to its second gradient. (42

Model A relaxation is relatively straightforward, and pro-
ceeds, roughly speaking, to the nearest equilibrium. In the In order to simplify the discussion, we consider only
case of modeB, however, domain formation is rife in the strains in the near-critical regime. By analogy with EtQ)
early stages. This stage involves rapid relaxation to regiong€ adopt the ansatz
of local equilibria, separated from each other by interfaces.
Only in the late stages do the domains coalesce as the inter-
faces meet each other and mutually annihilate. The late
stages can take a very long time indeed.

Returning to the specific problem of this paper, the usefullhe quantityA(z,t)=A.(z,t) with A, the amplitude of
mathematical variable has not begrbut ratherd, the layer the fundamental mode, whose static properties we have ex-
slope. This is zero in the pure bookshelf geometry, and iramined in Sec. IIB. In particular, we have observed that
equilibrium is either plus or minus some equilibrium value. close to the cell edga changes on length scafg defined in
The free energy has some analogy to the classical Isingq. (16).
model, in which a magnetization takes a nonzero value — The projection of Eq.(43) onto the fundamental mode
either plus or minus — in some control parameter regimeyields the time-dependent generalization of Etp), which
The equations of our problem i turn out to be modeA (in s also the space-dependent version of B):

In the preceding sections we have studied the chevron
ormation taking the process to be homogeneous within the
cell — so-called homogeneous nucleation. By analogy with
gther nucleation processes, however, we might alternatively
suppose that the original bookshelf structure suffers from
spontaneous chevronlike defects that serve as nucleation cen-
ters for the chevron structure wher=1. In this case we
é/g‘ould expect the chevron formation not to occur as an es-
séntially homogeneous process, but rather by an invasion. A
front between the chevron and bookshelf regions, initially

lose to the spontaneous defect, would then advance into the
ookshelf region until the chevron deformation filled the
whole system. In this section we model this possibility.

We first derive the nonlinear dynamical equation govern-
ing displacemenu(x,z,t). We shall then use it to study
ermeation waves traveling in thedirection. The funda-

L2
+ 4 ZECUXXXX .
a

p

u(x,z,t)=%A(z,t)[l+cos{2wx/L)]. (43
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3 a9 79 carried out by Saarloogl6]. Some experimental studies of

— Ty = 5,23— +g9-g°. (44)  these traveling waves in a liquid crystal context can be found
4r%(o—1) " Tz in [24,25).

Thus, nothwithstanding the multiplicity of the solution

We can now rescale time and space variables: manifold, in practice both numerical and physical domain
walls are expected to travel at the velocity= 2.
T 4772(0—1)t 5 2 45 Retranslating the nondimensionalandt into physical
B 37, ' - & variables using Eq(45), we find that the nondimensional

velocity v,=2 corresponds to physical velocity:

€— €. 1/2
T) Ve. (48)

The fundamental time scale’ differs fromt by a factor
depending on the chevron number The lengthé, defined

by Eq. (16) also depends omr. In both cases the rescaling
takes into account critical effects so that the fundamental _ : et a3
time and spatial scales, although set by microscopic quantf> umerical §55t|mat%?fwa||,_tak|nge— 107, L=10 “cm,
ties, diverge as the critical poimt=1 is approached. andBX,=10 ° cn?’s " [8] yieldsvyq~10 * cms™*. The

In the scaled variables Eq44) is now the well known Physical width of the wall is- . _ ,
modified Fisher or Fisher-Kolmogorov equatift6]: We have also carried out some unsystematic but revealing
simulations of the late stages of domain-wall driven nucle-

47BA,
VwaII:T

5 ation. We find that if a bookshelf region is invaded from the
9 _ ‘9_9+g(1_gz) (4¢)  left by ag=-+1 chevron region and from the right byca
ot 972 ' =—1 region(or vice versy then the domain walls collide

when the bookshelf region is completely overwhelmed. The

This equation is a paradigm for the analysis of systemgollision process leaves behind, on a time scafe
that are suddenly quenched into an unstable state, and whoser,/(o—1), a stationary- 1/+ 1 wall of width ~§,. This
subsequent time evolution is dominated by domain walldomain wall is closely analogous to the healing region close
propagation. Let us summarize its properties. to the cell edge discussed in Sec. Il B. Similarly, if the book-

The stateg=0 is unstable, whereas the states+1 are  shelf region is invaded from both sides by chevron regions
stable. Depending on the initial conditions, chevron structurdvith the same polarity, then domain-wall collision leads to a
formation may occur either by uniform growtfwhich we  homogeneous static chevron region. The memory of the col-
have discussed in Sec. Il)®r by domain wall propagation. lision disappears over a time scatp. If, however, a small
The properties of the domain walls in this and related modelg¢one-dimensional g=—1 region is trapped within two

have been discussed extensively in the literafre-21]. largerg= +1 regions, then the insidg= —1 region is de-
This domain wall lies between the unstable stgte0 and stroyed on rather long time scales. Equivalently, the
the stable statg= *1, and advances into tlgge=0 region. = —1/+1 domain walls attract weakly. We have not, however,

The net result is the replacement of tpe 0 region by ag  carried out detailed studies of this process.
==*1 regime.

The Fisher-Kolmogorov equatio@6) sustains many do- VI. SUMMARY AND CONCLUSIONS
main wall solutions with different velocities. A particularly

simple tanh solutiori22], which has been discovered on a  In this paper we have continued the study of the dynamics
number of different occasions, is of chevron formation in a Sm-phase following a quench of

a bookshelf structure into an unstable state. The dynamical

exi 32T ~T5) — (1N2)7] equations are derived from the standard formulations of

— Sm-A liquid crystal hydrodynamics, although this set of pa-
g P == (47) _ b SIS SEL
1+exq3/2(t’—t(’,)—(1/\/§)z] pers is, to our knowledge, their first application in this con-
text.

This solution describes the advance of the wall dividing the ~This equilibrium chevron phase results from the mismatch

chevron structure from the bookshelf structure. The wallPetween the layer spacings in the bulk and at the interfaces.

moves into the bookshelf structure with speed/2/and ~ Our free energy is closely related to that used by one of us

characteristic width/2 in dimensionless units. efarller in a study o_f the statid$], and also to that used by
However, this solution is not unique. There are exact do-imat and Pros{S] in an analogous study. o

main wall solutions of the form(T’ 7) = g(z—vi’) travel- The dynamics is strongly dependent on the conditions at

; . X " . the edges of the cell. In principle, there is strong coupling
ing with arbitrary velocities/=v, [23], wherev is the so- between layer relaxation and hydrodynamic flow. We have
called marginal stability velocity.

. found in paper | of this series that it is the hydrodynamic
However, Aronson.ah.d Welnpgrgﬁﬁ“z] ha\LeNShown that  fow which is normally expected to play the major role in the
for the (rather naturalinitial condition thatA(z,t’=0) de-  dynamics of the layer distortion. In this subsequent paper we
cays faster tham™* for large z, the domain wall velocity have shown that when mass flow is forbidden by the cell
approaches the marginal stability velocity=2. The mar- edge conditions, the dynamics of the formation of the chev-
ginal stability criterion and its clear physical interpretationron structure occurs by layer permeation. In this process, the
has been given by Dee and Lang28]. A detailed study of layer structure diffuses through the stationary fluid.
the Fisher-Kolmogorov equation in physical terms has been This process is governed by the nonlinear modified Fisher
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equation and is extremely slow. Even in the case of a vergonventionalV shape; no surprises there. For higleerby

thin cell, L=10"2 cm, it can take several hours. In principle, contrast, it seems that there are remarkable long-lasting
the chevron phase may form uniformly over the wholequasi-metastable intermediaié-like structures. We specu-
sample, or it may be nucleated from a chevronlike defect idate that very slight cell defects might stabilize these multi-
the initial bookshelf structure. In the latter case the invasiorchevron-tip structures.

front is extremely slowyv~10 4 cms 1. At this stage it is Finally, this work raises a number of interesting questions
difficult to make a definite prediction between these two sceto which we hope to return in further research. First, our
narios. condition of zero flow with fixed edges is clearly an ideali-

However, the most striking prediction concerns uniformzation. We anticipate that a more detailed study of the hy-
chevron formation. We have shown that when hydrodynamidrodynamics would yield a perturbation structure, with flow
cal interactions dominate, the chevron formation is monoinduced by a coupling paramete?zzr\,/rp~10*8, and
tonic and is akin to the relaxation of any nonconserved ordewith the possibility of compressibility effects playing a non-
parameter; it exhibits modeh behavior. The amplitude of negligible role. Second, the extension of this kind of process
the chevron grows in time starting from an initial fluctuation. to the SmE phase, in which there are extra orientational
In that case, in some sense, the chevron formation is not onigegrees of freedom, may or may not be straightforward.
monotonic, but also monotonous.

If the hydrodynamical interaction is disrupted, however,
as discussed in this paper, not only is the chevron formation
many orders of magnitude slower, but its qualitative nature A.N.S. is grateful to EPSRC and INTAS for financial sup-
changes for sufficiently deep quenches. Now the relaxation iport in Southampton and St. Petersburg. L.D.H. is grateful to
as though the angular variable were conserved and it exhibiSPSRC and DERA, Malvern for their financial support. We
model B behavior. For shallow quenches to moderate chevare grateful to E. I. Kats, S. Kralj, N. Vaupoti§. Zumer,
ron numberso<5, the chevrons grow steadily toward the and A. A. Wheeler for useful discussions.
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